International Journal of Recent Innovations in Academic Research

This work is licensed under a Creative Commons Attribution 4.0 International License [CC BY 4.0]

E-ISSN: 2635-3040; P-ISSN: 2659-1561 Homepage: https://www.ijriar.com/ Volume-9, Issue-4, October-December-2025: 51-54

Research Article

Prevalence of Tick Infestation of Sheep in Gwagwalada Area Council, Federal Capital Territory (FCT), Nigeria

*aEjiofor, C.E. and bObeta, P.C.

^{a&b}Department of Parasitology and Entomology, Faculty of Veterinary Medicine, University of Abuja, FCT, Nigeria

*Corresponding Author Email: charles.ejiofor@uniabuja.edu.ng

Received: September 21, 2025 **Accepted:** October 12, 2025 **Published:** October 18, 2025

Abstract

Globally, ticks serve as vectors of both animal and human pathogens, and their infestations are a major constraint to efficient and profitable sheep production in Nigeria. This study investigated the prevalence of tick infestation on sheep in Gwagwalada Area Council, Federal Capital Territory, Abuja. In a cross-sectional survey, 200 sheep were sampled for ticks from randomly selected homes and sheep markets within the study area. The ticks were identified morphologically using standard keys under a stereomicroscope. The results showed an overall prevalence of 14% tick infestation. Three tick species were encountered-Boophilus, Amblyomma, and Hyalomma-with prevalence rates of 66.67%, 26.98%, and 6.35%, respectively. Female ticks (66.7%) were more prevalent than males (33.3%). Tick infestation was unevenly distributed, with the Veterinary Teaching Hospital farm (47.62%) and Hajj camp (39.68%) recording the highest infestation rates, while Kutunku, Gwagwalada abattoir, and SDP sheep market recorded none. The relatively low prevalence of tick infestation and variations across locations suggest that environmental and management factors play crucial roles in tick infestation rates.

Keywords: Sheep, Tick Infestation, *Boophilus*, Gwagwalada, Prevalence, Nigeria.

Introduction

Sheep (Ovis aries) are domesticated ruminant mammals that serve as important livestock worldwide. The term "sheep" usually refers to the domesticated species within the genus Ovis. They belong to the order Artiodactyla, which includes all even-toed ungulates and ruminants. Common classifications include lamb (juvenile), ewe (adult female), ram or tup (intact male), and wether (castrated male) (Smith et al., 2022). Sheep rearing is a vital agricultural practice globally, contributing significantly to economic growth and development (Sertse and Wossene, 2007; Adang et al., 2015). In Nigeria, sheep are integral to the ruminant industry, with an estimated population of 22.1 million (Lawal et al., 2012; Ola et al., 2017). Small ruminants represent about one-third of the nation's agricultural gross domestic product (Lawal et al., 2012; Obi et al., 2014). Sheep provide protein (meat), manure, skin, and income, and also hold socio-cultural value (Okorafor et al., 2015; Ola et al., 2017). Despite their importance, limited research has been done on tick infestation of sheep in Gwagwalada Area Council. Previous tick ecology studies focused primarily on northern Nigeria (Sannar and Ilsey, 1956), leaving gaps in understanding regional infestation patterns and associated risk factors. Livestock farming plays a crucial role in Nigeria's economy, employing over 80% of the population. Gwagwalada, a key agricultural hub in the Federal Capital Territory, relies heavily on small ruminant farming. However, data on tick species infesting sheep in the region remain scarce. This study seeks to provide comprehensive data on tick prevalence and species composition, supporting evidence-based control strategies to improve sheep health, productivity, and farm sustainability.

Materials and Methods

The research was conducted in Gwagwalada Area Council, located about 55 km southwest of Abuja between latitudes 8°55′N–9°00′N and longitudes 7°00′E–7°05′E. The area has Guinea Savannah vegetation and a tropical climate, with a wet season (April–October) and a dry season (November–March). Average temperatures range from 30°C to 37°C, conditions favourable for tick proliferation (Adamu *et al.*, 2014). A cross-sectional study design was adopted, encompassing sample collection and laboratory identification. Between June and September 2024, ticks were collected from 200 sheep randomly selected from households

and markets. Preferred tick attachment site-ears, neck, perineum, and inguinal areas-were examined. Ticks were removed using fine-tipped forceps and preserved in 10% formaldehyde for identification (Walker, 2003). Ticks were identified morphologically based on features such as the capitulum shape, eye presence, festoons, and adanal plates (Walker, 2003). The species identified included *Rhipicephalus* (*Boophilus*) decoloratus, *Amblyomma variegatum*, and *Hyalomma rufipes* (Ogo et al., 2012).

Data Analysis

Data were analysed using Microsoft Excel 2015 and SPSS version 26. Descriptive statistics were used to calculate prevalence and percentage distributions, displayed using tables and charts.

Results

Out of 200 sheep examined, 28 were infested with ticks, yielding an overall prevalence of 14%. Three tick genera were identified: *Boophilus, Amblyomma*, and *Hyalomma*, with *Boophilus* being the most prevalent (66.67%). Female ticks constituted 66.7% of all collected specimens.

Table 1. Tick infestation on sheep by sex.

Sex	Number of sheep sampled	Number infested	Prevalence (%)
Female	33	18	9.0
Male	167	10	5.0
Total	200	28	14.0

Table 2. Tick species identified.

Tick species	Number identified	Percentage (%)	
Boophilus sp.	42	66.67	
Amblyomma sp.	17	26.98	
Hyalomma sp.	4	6.35	

Table 3. Tick prevalence by location.

Location	Number of sheep sampled	Number of ticks	% of ticks
Veterinary teaching hospital farm	10	30	47.62
Hajj camp	42	25	39.68
Anagada livestock market	50	8	12.70
Kutunku	46	0	0
Gwagwalada abattoir	2	0	0
SDP sheep market	50	0	0

Discussion

The 14% tick prevalence recorded in this study is higher than that reported among small ruminants in Makurdi (8.1%) (Ofukwu *et al.*, 2008), but comparable to findings in Uli, southeast Nigeria (14.85%) (Obi *et al.*, 2014). The differences may relate to climatic variations, sampling season, and management practices such as acaricide use and hygiene (Pegram *et al.*, 1993).

Three tick species were identified, with *Boophilus* being dominant, consistent with previous studies (Gaga *et al.*, 1992; Tiki and Addis, 2011; Hador, 2015). The predominance of *Boophilus* aligns with its role as a vector for bovine babesiosis and anaplasmosis (de la Fuente *et al.*, 2008). The presence of *Amblyomma* and *Hyalomma*-known vectors of *Ehrlichia ruminantium*, *Theileria*, and Crimean-Congo haemorrhagic fever virus-poses zoonotic risks (Walker, 2003; Zhao *et al.*, 2020).

Female ticks were more prevalent (66.7%) than males (33.3%), corroborating findings by Kabir *et al.*, (2011) and Sonenshine and Roe (2014), who attributed this to longer feeding duration and visibility of females. Spatially, tick infestations were concentrated at the Veterinary Teaching Hospital farm and Hajj camp, possibly due to microclimatic factors and less rigorous tick control.

Conclusion

This study revealed a 14% tick infestation prevalence among sheep in Gwagwalada Area Council. The dominant tick species was *Boophilus*, followed by *Amblyomma* and *Hyalomma*. The high female-to-male tick ratio and non-uniform distribution suggest that management and environmental conditions play key roles in infestation dynamics.

Declarations

Acknowledgements: We would like to acknowledge the entire staff of Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Abuja for extending their help during this work. We also wish to sincerely appreciate Mrs. Amaka Onyekanihu and Mrs. Bukola Arowolo for their invaluable assistance during the course of this research.

Author Contributions: ECE: Concept, design, literature survey, prepared first draft of manuscript, implementation of study protocol, data collection, data analysis, manuscript preparation and submission of the article; OPC: Design of study, results interpretation, statistical analysis, editing and manuscript revision.

Conflict of Interest: The authors declare that they have no conflict of interest.

Consent to Publish: The authors agree to publish the paper in International Journal of Recent Innovations in Academic Research.

Data Availability Statement: The data presented in this study are available upon request from the corresponding author.

Funding: This research received no external funding.

Institutional Review Board Statement: The proposal for the study was approved by the Institutional Review Board of the Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Abuja, Nigeria.

Informed Consent Statement: Not applicable.

Research Content: The research content of manuscript is original and has not been published elsewhere.

References

- 1. Adamu, M., Ogo, N.I., Otesile, E.B. and Olubade, R.B. 2014. Prevalence and species diversity of ixodid ticks infesting cattle in Gwagwalada, Abuja. Nigerian Journal of Parasitology, 35(1): 47–52.
- 2. Adang, K.L., Oniye, S.J., Ezealor, A.U., Abba, A.M., Yoriyo, K.P. and Adamu, Y.A. 2015. Ectoparasites of sheep and goats in a semi-arid region of Nigeria. Nigerian Veterinary Journal, 36(2): 85–92.
- 3. de la Fuente, J., Estrada-Peña, A., Venzal, J.M., Kocan, K.M. and Sonenshine, D.E. 2008. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Frontiers in Bioscience, 13: 6938–6946.
- 4. Gaga, J.J., Nnadi, P.A. and Adamu, M. 1992. Tick infestation on livestock in northern Nigeria. Tropical Animal Health and Production, 24(3): 199–203.
- 5. Hador, M. 2015. Epidemiology of tick-borne diseases in sub-Saharan Africa. Journal of Veterinary Medicine, 62(4): 201–210.
- 6. Kabir, M.H.B., Mondal, M.M.H., Eliyas, M., Mannan, M.A., et al. 2011. An epidemiological survey on investigation of tick infestation in cattle at Chittagong District, Bangladesh. African Journal of Microbiology Research, 5(4): 346–352.
- 7. Lawal, M.D., Fabiyi, J.P. and Alayande, M.O. 2012. Prevalence of ectoparasites of sheep and goats in Sokoto metropolis, Nigeria. Nigerian Veterinary Journal, 33(2): 53–58.
- 8. Obi, C.F., Umeaku, C.N. and Eze, D.C. 2014. Prevalence of ectoparasites of small ruminants in Uli, southeastern Nigeria. International Journal of Agricultural Science, 4(2): 123–129.
- 9. Ofukwu, R.A., Akwuobu, C.A. and Akwuobu, I.A. 2008. Survey of ectoparasites of small ruminants in Makurdi, Nigeria. Journal of Animal and Veterinary Advances, 7(10): 1233–1236.
- 10. Ogo, N.I., de Mera, I.G.F., Galindo, R.C., Okubanjo, O.O., et al. 2012. Molecular identification of tick-borne pathogens in Nigerian ticks. Veterinary Parasitology, 187(3–4): 572–577.
- 11. Okorafor, U.P., Obebe, O.O., Unigwe, C.R., Atoyebi, T.J. and Ogunleye, O.K. 2015. Studies on the gut parasites of small ruminants reared in some selected farms in Ido local government area, Oyo State, Nigeria. Applied Research Journal, 1(3): 153-159.
- 12. Ola, F.N., Nnadi, P.A. and Chukwu, C.C. 2017. Prevalence of ectoparasites of small ruminants in Nsukka, Enugu State, Nigeria. Nigerian Veterinary Journal, 38(2): 111–119.
- 13. Pegram, R.G., Hoogstraal, H. and Wassef, H.Y. 1993. Ticks (Acari: Ixodoidea) of Ethiopia: Distribution, ecology and host relationships of species infecting livestock. Bulletin of Entomological Research, 83(1): 83–94.
- 14. Sannar, P. and Ilsey, M. 1956. The ecology of ticks in northern Nigeria. Journal of Parasitology, 42(3): 201–212.

- 15. Sertse, T. and Wossene, A. 2007. Effect of ectoparasites on quality of pickled skins and their impact on the tanning industries in Amhara regional state, Ethiopia. Small Ruminant Research, 69(1-3): 55-61.
- 16. Smith, A.E., Ruston, A., Doidge, C., Lovatt, F. and Kaler, J. 2022. Putting sheep scab in its place: A more relational approach. Preventive Veterinary Medicine, 206: 105711.
- 17. Sonenshine, D.E. and Roe, R.M. 2014. Biology of ticks, Volume 2. Oxford: Oxford University Press.
- 18. Tiki, B. and Addis, M. 2011. Distribution of ixodid ticks on cattle in and around Holeta town, Ethiopia. Global Veterinaria, 7(6): 527–531.
- 19. Walker, A.R. 2003. Ticks of domestic animals in Africa: A guide to identification of species (Vol. 74). Edinburgh: Bioscience Reports.
- 20. Zhao, G., et al. 2020. Ticks and tick-borne pathogens in China. Frontiers in Cellular and Infection Microbiology, 10: 449.

Citation: Ejiofor, C.E. and Obeta, P.C. 2025. Prevalence of Tick Infestation of Sheep in Gwagwalada Area Council, Federal Capital Territory (FCT), Nigeria. International Journal of Recent Innovations in Academic Research, 9(4): 51-54.

Copyright: ©2025 Ejiofor, C.E. and Obeta, P.C. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.